Home Work #1

1. The voltage across the network shown below is \(v(t) = \sqrt{2} \ 120\cos(\omega t + \frac{\pi}{6}) \) and the current into the network shown below is \(i(t) = \sqrt{2} \ 10\cos(\omega t - \frac{\pi}{6}) \).

 \[
 \begin{array}{c}
 \hline
 \text{v(t)} \\
 \hline
 \text{+} \\
 \hline
 \text{i(t)} \\
 \hline
 \text{-} \\
 \hline
 \end{array}
 \]

 \text{Single Port Network}

 (a) Determine \(p(t), S, P, \) and \(Q \) into the network.

 (b) Find a simple (two-element) series circuit consistent with the prescribed terminal behavior as described above; i.e., is it an RL or an RC series circuit and what are the values of the parameters.

2. The rms magnitude of the voltage across a single port network is 100. The instantaneous power into the network has a maximum value of 1707 W and a minimum value of -293 W.

 (a) Find a series RL circuit equivalent to the network.

 (b) Determine \(S = P + jQ \) into the network.

 (c) Determine the maximum instantaneous power into \(L \) and compare with \(Q \).

3. A certain single phase load draws 5 MW at 0.7 power factor lagging. Determine the reactive power required from a parallel capacitor to bring the power factor of the parallel combination up to 0.9.